Relative star normal type

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Integral Representations of Generalized Relative Type and Generalized Relative Weak Type of Entire Functions

In this paper we wish to establish the integral representations of generalized relative type and generalized relative weak type as introduced by Datta et al [9]. We also investigate their equivalence relation under some certain conditions.

متن کامل

On Relative Star-lindelöf Spaces

In this paper, we prove the following statements: (1) There exist a Tychonoff space X and a subspace Y of X such that Y is strongly star-Lindelöf in X and e(Y, X) is arbitrarily large, but X is not star-Lindelöf. (2) There exist a Tychonoff space X and a subspace Y of X such that Y is star-Lindelöf in X, but Y is not strongly star-Lindelöf in X.

متن کامل

Relative non-Normal Graphs of a Subgroup of Finite Groups

Let G be a finite group and H,K be two subgroups of G. We introduce the relative non-normal graph of K with respect to H , denoted by NH,K, which is a bipartite graph with vertex sets HHK and KNK(H) and two vertices x ∈ H HK and y ∈ K NK(H) are adjacent if xy / ∈ H, where HK =Tk∈K Hk and NK(H) = {k ∈ K : Hk = H}. We determined some numerical invariants and state that when this graph is planar or...

متن کامل

Depth from relative normal flows

Abstrlet--Most of the depth from image flow algorithms has to rely on either good initial guesses, or some assumptions about the object surfaces to achieve solutions that agree with the physical world. Waxman and Sinha point out that those restrictions can be relaxed if depth is computed from a relative image flow field. Since image flow determination is relatively much more difficult than norm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2005

ISSN: 0166-8641

DOI: 10.1016/j.topol.2005.01.017